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Abstract Land surface modeling combined with data assimilation can yield highly accurate soil moisture
estimates on regional and global scales. However, most land surface models often neglect lateral surface and
subsurface flows, which are crucial for water redistribution and soil moisture. This study applies the Community
Land Model (CLM) and the coupled CLM‐ParFlow model over a 22,500 km2 area in western Germany. Soil
moisture retrievals from the Soil Moisture Active Passive mission are assimilated with the Localized Ensemble
Kalman Filter (with and without parameter estimation). The simulated soil moisture, evapotranspiration (ET)
and groundwater level are evaluated using in situ observations from a Cosmic‐Ray Neutron Sensor network,
Eddy Covariance (EC) stations and groundwater measurement wells. The assimilation improves the median
correlation between simulated and measured soil moisture from 0.72 ∼ 0.79 to 0.79 ∼ 0.83 and decreases the
median unbiased Root Mean Square Error (ubRMSE) from 0.063 ∼ 0.060 cm3/cm3 to 0.050 ∼ 0.045 cm3/cm3.
ET characterization shows a limited improvement with a highest ubRMSE reduction of 15% at the
Rollesbroich1 site with the CLM‐ParFlow model. The assimilation does not improve the groundwater level
characterization. Furthermore, the joint state‐parameter update does not outperform state‐only update. Overall,
the simulation of full 3D subsurface hydrology with the ParFlow model component results in additional model
outputs like groundwater levels and river stages, and a better soil moisture characterization (compared to CLM
stand‐alone), but it does not make soil moisture assimilation more efficient to correct model states.

1. Introduction
Soil moisture impacts crop yield, controls the division of precipitation into surface runoff and soil infiltration, and
regulates sensible and latent heat fluxes (Babaeian et al., 2019; Seneviratne et al., 2010). Accurate and large‐scale
soil moisture data are essential for understanding hydrological processes, predicting weather and extreme events,
and developing effective water resources management strategies. While in situ measurement networks, such as
Terrestrial Environmental Observatories (TERENO) (Zacharias et al., 2011) in Germany, Texas Soil Observation
Network (TxSON) (Clewley et al., 2017) in the USA, and the Tibetan Plateau Observatory of Plateau Scale Soil
Moisture and Soil Temperature (Tibet‐Obs) (Su et al., 2011) in China, provide high‐quality soil moisture ob-
servations, their spatial coverage remains limited to specific regions.

Soil moisture can be simulated using land surface models (LSMs), for example, the Community Land Model
(CLM) (Oleson et al., 2008) with different spatial and temporal resolutions depending on the research question
and the available computational resources. Nevertheless, the accuracy of model predictions is often compromised
by uncertainties related to input data. For instance, offline LSMs must be driven by meteorological forcing data
sets and are sensitive to the accuracy of the atmosphere forcings (Albergel et al., 2018). In addition, the un-
certainties in soil and vegetation properties and model structure errors greatly influence the simulations (Bastidas
et al., 2003; Hartley et al., 2017; J. Li et al., 2018; Laguë et al., 2019).

Alternatively, remote sensing techniques provide a possibility to obtain continuous and global soil moisture data.
Soil moisture data from satellites like SMOS (Soil Moisture Ocean Salinity) (Kerr et al., 2010) and SMAP (Soil
Moisture Active Passive) (Entekhabi et al., 2010) provide exhaustive information at a coarse resolution of 36 km
or 9 km, respectively. These satellites capture soil moisture information from the upper soil layer (approximately
5 cm depth), and their accuracy may be influenced by factors such as vegetation type and distribution (Jha
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et al., 2007; Konings et al., 2017; Zheng et al., 2018). Data assimilation, a technique that combines observations
with model predictions, offers a promising approach to enhance the accuracy of LSMs. Sequential data assim-
ilation in combination with LSMs has been used to provide better estimates for soil moisture for two decades (Han
et al., 2014; Koster et al., 2018; Lievens, Martens, et al., 2017; Lievens, Reichle, et al., 2017; Nair & Indu, 2019;
Nie et al., 2022; Pleim & Xiu, 2003; Reichle, 2008; Reichle et al., 2002; Yang et al., 2016; Yin et al., 2015).

Several studies have assimilated remotely sensed soil moisture observations into LSMs for the improvement of
predictions of soil moisture and other hydrological variables. For example, SMOS and SMAP products have been
assimilated into LSMs (e.g., GEOS‐5, VIC‐CMEM coupled model) with Ensemble Kalman Filter (EnKF) and
pronounced improvements in soil moisture characterization are observed (Ahmad et al., 2022; De Lannoy &
Reichle, 2016; Lievens et al., 2016; Lievens, Martens, et al., 2017; Reichle et al., 2017). Studies using other
satellite‐based products (e.g., ESACCI and ASCAT) also demonstrated the potential of assimilating remotely
sensed soil moisture information to improve soil moisture estimates (Nair & Indu, 2019; Naz et al., 2019; Pin-
nington et al., 2018; Zhou et al., 2022). In general, most studies indicate that while the assimilation of remotely
sensed retrievals improves soil moisture estimates, the improvement is limited when it comes to characterizing
land surface fluxes and estimating runoff (Ahmad et al., 2022; De Santis et al., 2021; Lu et al., 2020; Martens
et al., 2016; Naz et al., 2019; Prakash & Mishra, 2023). Traditional LSMs usually do not take into account lateral
water exchange, restricting water flow to the vertical direction only. Several studies suggest that groundwater
dynamics need to be considered when dealing with land surface processes (Kollet & Maxwell, 2008; Liang
et al., 2003; Maxwell & Miller, 2005). A more detailed representation could not only improve soil moisture
characterization (Kim &Mohanty, 2017), but also influence energy flux partitioning (Maxwell & Condon, 2016;
Z. Zhang et al., 2021), runoff, and groundwater recharge (Holtzman et al., 2020; Wang et al., 2020). Therefore,
coupled simulation platforms have been developed to examine the coupled water and energy cycles in the
atmosphere‐land surface‐subsurface continuum (Maxwell et al., 2007; Rummler et al., 2019; Sulis et al., 2017;W.
Tian et al., 2012). Such models include Flux with Penn State Integrated Hydrologic Model (PIHM) (Shi
et al., 2013), CLM 4.0 with process‐based Adaptive Watershed Simulator (Shen et al., 2013), CATchment
HYdrology with Noah‐Multiparameterization LSM (Noah‐MP) (Niu, Paniconi, et al., 2014; Niu, Troch,
et al., 2014). Furthermore, the Terrestrial System Modeling Platform (TSMP) (Shrestha et al., 2014) was
developed, consisting of three different models which are two‐way coupled: the atmospheric simulation model
COSMO (Consortium for Small‐Scale Modeling) (Baldauf et al., 2011), the LSM CLM 3.5 (the CLM) (Oleson
et al., 2008) and the sub‐surface hydrological model ParFlow (Kollet & Maxwell, 2006). TSMP can model the
water and energy cycles from the very deep subsurface to the stratosphere (Sulis et al., 2017) and is one of the few
available modeling platforms that fully integrates the atmospheric, land surface, and subsurface physical pro-
cesses. TSMP calculates three‐dimensional flow over the entire domain and has a detailed physical modeling of
the land surface fluxes (Koch et al., 2016). Despite improved representation of LSM processes, a limited number
of synthetic studies have investigated the value of data assimilation when employed in conjunction with inte-
grated land surface‐subsurface models. These studies (Hung et al., 2022; S. V. Kumar et al., 2009; F. Li
et al., 2024; Sawada, 2020) have demonstrated that the information of soil moisture observations can be prop-
agated to the neighboring grid cells and in the vertical profile.

The objective of this study is to conduct, for the first time, an evaluation of assimilating remote sensing soil
moisture information into the two‐way coupled CLM‐ParFlowmodel within the TSMP framework in a real‐world
case study. By integrating SMAP data into a high‐resolution modeling system that is capable of simulating three‐
dimensional saturated and unsaturated groundwater flow, it allows us to examine SMAP's potential to improve
soil moisture, evapotranspiration and groundwater level characterization compared to traditional LSMs, such as
CLM. While SMAP observations are limited to the top 5 cm of soil, where soil moisture dynamics are primarily
influenced by vertical fluxes (e.g., infiltration and evaporation), lateral flow processes can indirectly affect
surface soil moisture through subsurface moisture redistribution, particularly in regions with complex topog-
raphy. We evaluate the soil moisture estimates and other predicted variables in both CLM and CLM‐ParFlow in
situ measurements over a temperate region in western Germany. This paper addresses the following research
questions:

1. Does the SMAP soil moisture product provide effective information to improve the characterization of soil
moisture states in the high‐resolution coupled land surface‐subsurface CLM‐ParFlow model more than in the
stand‐alone CLM model?
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2. How does assimilating remotely sensed soil moisture affect the characterization of ET in CLM‐ParFlow and
can the characterization of ET be improved more than for the stand‐alone CLM model?

3. How does soil moisture assimilation affect shallow and deep groundwater level predictions in the coupled land
surface‐subsurface model?

4. Does updating the model parameters, in addition to the states, further improve the simulation of hydrological
variables?

2. Materials and Methods
2.1. Study Area and In Situ Data

In this work, SMAP soil moisture data is assimilated into the TSMPmodel for the so‐called NRW‐domain, which
consists of parts of the North Rhine‐Westphalia, Rhineland‐Palatinate and Hesse Federal states in western
Germany, and includes also parts of Belgium, the Netherlands and Luxemburg (Figure 1). The domain size is
150 km × 150 km. The elevation ranges from 13 m in the northwestern part to 735 m in the southern part. This
elevation gradient also influences the precipitation patterns, with the southern region receiving high precipitation
amounts reaching up to 1,600 mm annually, whereas the average yearly precipitation in the rest of the research
area ranges from 600 to 900 mm (Quirmbach et al., 2012; Zhao et al., 2021). The research area is distinguished by
a temperate climate, with average monthly temperatures varying between 3°C in January and 18°C in July in the
lower parts of the study domain. It is notable for a high population density and extensive urban development,
while the remaining land cover is predominantly composed of grasslands, agricultural fields, and forested regions.
TSMP runs over the NRW domain have already been performed by Sulis et al. (2018) and Uebel and Bott (2018).

Cosmic Ray Neutron Sensors (CRNS) measurements are an emerging technology for monitoring soil moisture at
the intermediate scale. The measurement radius ranges between 130 and 300 m as function of factors like air
density, air humidity and vegetation density (Köhli et al., 2015; Zreda et al., 2012). The penetration depth of
CRNS measurements varies from 15 cm (wet soils) to 80 cm (dry soils) (Franz et al., 2012; Köhli et al., 2015).
Several studies have been conducted to investigate the accuracy of the CRNS measurements (Jakobi et al., 2018;

Figure 1. (a) Location of the study area in Europe (DE = Germany; NL = Netherlands; BE = Belgium, LU = Luxemburg);
(b) In situ stations for soil moisture (Cosmic‐Ray Neutron Sensor) and evapotranspiration (EC) in the study area;
(c) Elevation of the region (m, d) The spatial distribution of plant functional types, including bare, needleleaf evergreen tree
(NET), needleleaf deciduous tree, broadleaf evergreen tree (NET), broadleaf deciduous tree, broadleaf deciduous shrub,
grass and crop.
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Z. Tian et al., 2016; Zhu et al., 2016). In the study by H. Bogena et al. (2013), it is found that the root mean square
error (RMSE) of daily soil moisture data was about 0.03 cm3/cm3 for the forested site Wüstebach in Germany,
which has in general very high soil moisture content. Thirteen CRNS stations are located in the research domain
and are used for the verification of the simulations and data assimilation experiments. Table 1 provides further
details. The penetration depth z∗ of the CRNS measurements is calculated and given by Franz et al. (2012):

z∗ =
5.8

θ + 0.0829
(1)

where θ is the total soil water content. In order to compare measured soil moisture content by CRNS with
simulated soil moisture content, the soil moisture contents simulated for the different layers at different depths d
have to be weighted. The weights Wd are determined based on the following relation:

Wd = {
1 − d/z ∗, d≤ z ∗

0, d> z ∗
(2)

Aweighted average of soil moisture θz∗ is calculated over L vertical layers with depths di, simulated soil moisture
θdi and weights Wdi:

θz∗ =
∑

L
i=1Wdi ⋅ θdi
∑

L
i=1Wdi

(3)

The eddy covariance (EC) method allows to measure ET at the field scale. Four eddy covariance sites are located
in our study domain and are part of the FLUXNET2015 data set (Pastorello et al., 2020), including Selhausen
(crop land), Rollesbroich (grassland), Wüstebach (forest), and Vielsam (forest). Raw data, including fluxes of
latent heat, sensible heat, CO2 and meteorological variables, at high frequencies (10–20 Hz) and can be processed
into coarser time steps, such as half‐hourly or daily resolutions at each site (Pastorello et al., 2020). The data gaps
in fluxes and meteorological time series are filled, undergo quality checks, and are aggregated to daily obser-
vations (Ukkola et al., 2017). Figure 1 shows the spatial locations of the CRNS and EC stations.

Table 1
Cosmic‐Ray Neutron Sensor and EC Stations: Coordinates, Altitude From Digital Elevation Model (DEM) (m), Average
Annual Precipitation (mm y− 1), Plant Functional Types and Soil Texture Information (H. R. Bogena et al. (2022), Baatz et al.
(2017)

Name Latitude Longitude DEM Precip. Plant functional type Clay % Sand %

Merzenhausen 50.930 6.297 91 718 Crop 22 21

Aachen 50.799 6.025 232 865 Crop 23 22

Selhausen 50.866 6.447 101 718 Crop 24 16

Heinsberg 51.041 6.104 58 722 Grassland, crop 19 18

Wüstebach 50.505 6.331 607 1180 Forest 23 19

Gevenich 50.989 6.324 107 718 Crop 20 22

Rollesbroich1 50.622 6.304 515 1018 Grassland 23 22

Rollesbroich2 50.624 6.305 506 1018 Grassland – –

Ruraue 50.862 6.427 100 718 Grassland 26 19

Wildenrath 51.133 6.169 72 722 Forest 12 65

Kall 50.501 6.526 505 857 Grassland 22 20

Schoeneseiffen 50.515 6.376 611 870 Grassland 24 16

Kleinau 50.722 6.372 374 614 Grassland 25 15

Vielsam 50.305 5.998 493 1062 Forest – –
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The groundwater level observations are obtained from the monitoring network Geoportal NRW (https://www.
geoportal.nrw) and Groundwatertools (https://www.grondwatertools.nl). A total of 977 groundwater wells are
available in this research area, providing monthly observations throughout the year 2018. Of these, only 527 wells
with shallow groundwater levels (less than 30 m deep) are included in the analysis.

2.2. SMAP (L3_SM_P_E) Product

SMAP provides soil moisture measurements of approximately the top 5 cm of the soil and thaw/freeze state that
can be used in hydrological models and LSMs. The SMAP satellite completes a global soil moisture map with a
repetition of 2 ∼ 3 days and its orbit is exactly 8 days (P. E. O’Neill et al., 2021). Compared to other L‐band
sensors, for example, SMOS, the assimilation of SMAP data shows higher skill (Blyverket et al., 2019; L.
Zhang, Kim, & Sharma, 2019).

In this study, the L3_SM_P_E product from National Snow and Ice Data Center NSIDC (https://nsidc.org/
data/smap/smap‐data.html) is used, which provides soil moisture on a 9 km grid for the upper 5 cm soil with
an error of no greater than 0.04 cm3/cm3 (Colliander et al., 2017). The SMAP Enhanced Passive Soil
Moisture Products (L2_SM_P_E and L3_SM_P_E) have been developed after the SMAP radar stopped
operation in July 2015. To enhance the resolution of SMAP radiometer data, the Backus‐Gilbert optimal
interpolation technique is used to make most use of the additional information and provide a better repre-
sentation of the original data (Chan et al., 2017). L3_SM_P_E is a daily composite product that is generated
from L2_SM_P_E over one day composition. This enhanced product was assessed by comparing it with long‐
term in situ soil moisture data and it was found that the average unbiased Root Mean Square Error (ubRMSE)
of the level 3 product is around 0.045 ∼ 0.055 cm3/cm3 (Chan et al., 2017; Colliander et al., 2021; Montzka
et al., 2017; L. Zhang, Kim, & Sharma, 2019; R. Zhang, Kim, & Sharma, 2019).

2.3. CLM ‐ ParFlow in TSMP

The Terrestrial Systems Modeling Platform (TSMP) consists of the atmospheric model COSMO (Baldauf
et al., 2011), the LSM CLM 3.5 (Oleson et al., 2008) and the subsurface model ParFlow (Kollet &
Maxwell, 2006). These models are two‐way coupled by the Ocean Atmosphere Sea Ice Soil Model Coupling
Toolkit, OASIS‐MCT (Valcke, 2013). COSMO is the operational weather forecast model of the German weather
service (Baldauf et al., 2011). TSMP provides a flexible coupling arrangement that enables fully coupled sim-
ulations (COSMO + CLM + ParFlow) as well as partially coupled simulations (COSMO + CLM or
CLM + ParFlow). Additionally, each of the three models can be run independently. When simulating CLM or
CLM coupled with ParFlow, external forcing data is necessary to provide the required boundary conditions.

2.3.1. The Land Surface Model ‐ CLM

CLM 3.5 models the water and energy cycles in the soil‐vegetation‐atmosphere continuum including snow packs.
Five land cover types are defined in this model to characterize surface heterogeneity, including glacier, lake,
wetland, urban and vegetated. Snow accumulation is represented with up to five snow layers on top of the soil
layers. Plant properties are assigned on the basis of different plant functional types (PFTs). CLM has 10 soil layers
with varying thicknesses. Runoff calculation in CLM is based on the traditional TOPMODEL (Oleson
et al., 2004) approach. Hydraulic conductivity and porosity are determined by soil texture (% sand and % clay)
based on pedotransfer functions (Clapp & Hornberger, 1978; Cosby et al., 1984). A simplified Richards equation
is used to calculate the water movement in the unsaturated zone:

∂θ
∂t
=
∂
∂z
[k(

∂θ
∂z

∂ψ
∂t
) + 1] (4)

where θ represents the volumetric soil water content [L3/L3], t is time [T], k is the hydraulic conductivity [L/T], z
is height [L] and ψ is pressure head [L].

The hydraulic conductivity between two adjacent layers ki, j can be calculated as:
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ki,j =

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ks(i,j) [
0.5(θliq,j) + 0.5(θliq,j+1)
0.5(θsat,j) + 0.5(θsat,j+1)

]

2Bj+3

, 1 ≤ j ≤ 9

ks(i,j) [
θliq,j
θsat,j

]

2Bj+3

, j = 10

(5)

and i and j are layer indices. θliq is the volumetric liquid water content and θsat is the soil moisture content at
saturated state. The saturated hydraulic conductivity ks(i,j) is assumed to be exponentially decreasing with depth
following the TOPMODEL concept (Beven & Kirkby, 1979):

ks(i, j) = 0.0070556 × 10− 0.884+0.0153(%sand)j)[exp(−
zi,j
z0
)] (6)

where z0 = 0.5 m is the length scale for decrease in ks(i, j), zi, j represents height at the interface between i and j, and
the exponent Bj is calculated as:

Bj = 2.91 + 0.159(%clay)j (7)

The saturated water content θsat (i.e., porosity ϕ) is calculated as:

θsat = 0.489 − 0.00126(%sand) (8)

In the CLMmodel, the mass transfer equation (MT) and Monin‐Obukhov Similarity Theory are used to calculate
evapotranspiration (ET). The ground evaporation, evaporation from interception and transpiration are separately
considered. For the vegetated areas, the water vapor flux from vegetation Ev [M/L2/T] and from ground soil Eg
[M/L2/T] are calculated as follows:

Ev = − ρatm
(qs − qTvsat)

rtotal
(9)

Eg = − ρatm
(qs − qg)
rawʹ (10)

where ρatm is the atmospheric air density [M/L3], qs is the canopy specific humidity [M/M], q
Tv
sat is the saturated

specific humidity [M/M] at the vegetation temperature Tv, rtotal [T/L] is the total resistance to water vapor transfer
from the canopy to the canopy air, caused by both the leaf boundary layer and stomatal resistance, qg is the
specific humidity of ground, and rawʹ is the aerodynamic resistance [T/L] to water vapor transfer, from the ground
to the canopy air. A detailed description of the soil moisture content and ET calculation process can be found in
the CLM technical description document (Oleson et al., 2004).

2.3.2. The Subsurface Model ‐ ParFlow

ParFlow is a numerical, integrated hydrological model that simulates subsurface flow in unsaturated and saturated
porous media, as well as overland flow. ParFlow solves the pressure in the subsurface and interactions with
surface water bodies. The saturated‐unsaturated subsurface flow equation is solved in three dimensions according
to Richards. The surface water routing scheme is based on the kinematic wave approximation of overland flow,
while coupling subsurface flow and overland flow in an integrated fashion (Kollet & Maxwell, 2006). Both the
soil water retention curve and relative permeability are represented in ParFlow using the van Genuchten re-
lationships (Maxwell & Miller, 2005). The water retention curve and relative permeability in the Van Genuchten
model are defined as follows:

θψ = θsat +
θsat − θres

[1 + (α ⋅ψ)n)]1− 1/n
(11)
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kr =
[1 − (α ⋅ψ)n − 1

(1+ (α ⋅ψ)n)1 − 1/n
]
2

(1 + (α ⋅ψ)n)(1− 1/n)/2
(12)

Where ψ is the suction pressure [L] and kr is the relative permeability [− ]. α (α > 0) [L− 1] and n (n > 1) are soil
parameters that are related to air entry suction for drying/wetting and slopes in van Genuchten curves. θsat and θres
represent saturated water content and residual water content respectively (L3/L3). More details of this model can
be found in Kollet and Maxwell (2006, 2013).

2.3.3. The Integrated CLM‐ParFlow

The coupled CLM‐ParFlow model is used in this work. A schematic representation of CLM‐ParFlow in TSMP is
shown in Figure 2. The offline atmospheric forcing drives the CLM to model land surface processes. ParFlow
replaces the one‐dimensional soil hydrology of CLMwith a three‐dimensional approach. The models are coupled
via net infiltration (CLM calculates net infiltrating water for ParFlow), soil evaporation and transpiration
(including root water uptake) (CLM calculates water to be extracted by ParFlow), and ParFlow provides CLM
with saturation and pressure for the top 10 layers simultaneously (Shrestha et al., 2014).

2.4. Data Assimilation

The data assimilation framework PDAF (Nerger et al., 2005; Nerger & Hiller, 2013) has already been coupled to
TSMP (Kurtz et al., 2016). TSMP‐PDAF includes data assimilation algorithms like the EnKF (Evensen, 1994)
and its variants, for example, the localized Ensemble Kalman Filter (LEnKF) (Ott et al., 2004) and the local
ensemble transform Kalman filter (Hunt et al., 2007). In this study, the EnKF is used to assimilate SMAP soil
moisture data into TSMP. EnKF has already been proven to be robust and computationally efficient, suitable for
large‐scale non‐linear models (Zamani et al., 2010).

2.4.1. Ensemble Kalman Filter

The first step in the EnKF is the forecast step, where the model M calculates the state xt at time t:

xt =M(xt− 1,p,q)t (13)

Figure 2. Schematic diagram of CLM‐ParFlow in TSMP.
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where p is the vector with parameters and q is the vector with model forcings. This forecast step is carried out N
times, for each of the ensemble members j. The different ensemble members can have different atmospheric
forcings, model parameters and initial conditions, which should adequately capture the uncertainty in these
variables. The observation equation is:

yt = θt + εt (14)

where yt is the vector with measurements at the current time step t. In this study, the soil moisture observations θ
are assimilated. εt is a random vector containing the measurement errors. The model states for each of the re-
alizations are updated to xt,a by combining forecasts and the observations yt:

xt,a = xt +K(yt − Hxt) (15)

where H is the operator that links measurements and model states, and the Kalman gain K is defined as follows:

K = C fHT(HC fHT + R)− 1 (16)

where C is the covariance matrix of the model states and R is the measurement error‐covariance matrix. We
calculate C by:

C f =
1

N − 1
∑
N

j=1
(xti − x̄

t) (xtj − x̄
t) (17)

where x̄t represents the matrix with the ensemble mean of the model states at time t. N is the number of ensemble
members.

In some cases, the model parameters p are estimated together with the state variables by augmenting the vector x
(Hendricks Franssen & Kinzelbach, 2008). The augmented state vector for updating both states and parameters is
given by:

xt∗ = (
xt

pt
) (18)

The model covariance matrix C is then also composed of the cross covariances between the model states and the
model parameters, as well as the covariances among the parameters.

C f = (
Cxx Cxp
Cpx Cpp

) (19)

2.4.2. Localization

In the EnKF data assimilation, localization reduces the size of the matrix to be inverted to minimize the influence
of distant observations and removing spurious long‐distance correlations (Houtekamer & Mitchell, 1998). In the
localization process, the calculation of the model covariance matrix C is replaced by ρ°C. ρ is defined as a
correlation matrix with local support, which means that this function is only non‐zero in a local (small) region and
zero elsewhere. ° is the Schur (elementwise) product. Note that ρ andC have the same dimensions. Therefore, the
Kalman gain in the LEnKF scheme is calculated as follows:

K = [ρ°C f
j H

T][ρ°HC fHT + R]− 1 (20)

and ρ° is calculated using a fifth‐order polynomial function (Gaspari & Cohn, 1999).
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3. Experimental Setup
3.1. Input Data

The spatial model resolution is 500 m × 500 m in the lateral horizontal di-
rection. The soil depth in the CLM stand‐alone model reaches to 2.86 m with
10 near surface layers, and in CLM‐ParFlow to 30 m depth, with 10 near
surface layers with increasing thicknesses from 0.02 to 1 m and 20 vertical
layers with a thickness of 1.35 m each (see Table 2). The input data for CLM
consist of topography (Figure 1), PFTs (Figure 1), associated plant physio-
logical parameters and soil properties (Figure 3). The soil texture information
is taken from SoilGrids (Hengl et al., 2014, 2017) and remapped to the model
grid using the Nearest Neighbor (NN) approach (Boas et al., 2023). The PFTs
and Leaf Area Index (LAI) are extracted from the Moderate Resolution Im-
aging Spectroradiometer (MODIS) product and details can be found in
Shrestha et al. (2014).

To keep the consistency between the CLM and CLM‐ParFlow models, a
Rosetta model (Y. Zhang & Schaap, 2017) is used to estimate the saturated
hydraulic conductivity in the surface layers (0–3 m below the surface) of
CLM‐ParFlow. The Rosetta model takes the soil texture information from

CLM. The porosity (ϕ) in the surface layers of CLM‐ParFlow is calculated based on the same function that is used
in the CLM model. For lower layers (3–30 m), the permeability information was taken from a global geological
data set (Gleeson et al., 2011), for details see Shrestha et al. (2014). Other van Genuchten water retention pa-
rameters (e.g., α and n) are assigned constant, spatially uniform values that are adopted from previous studies
(Shrestha et al., 2014; Sulis et al., 2017). The soil texture in CLM and hydraulic parameters in CLM‐ParFlow for
the surface layers and bottom layers are shown in (Figure 3). Sandy soils are mainly located in the northwestern
corner of the research domain, leading to a high hydraulic conductivity there. An impermeable boundary con-
dition is defined for the lateral borders of the subsurface.

Table 2
Node Depth z, Thickness Δz1, and Depth at the Layer Interface zh1 of the Ten
Soil Layers Within the Community Land Model Model, Thickness Δz2, and
Depth of the Layer Interface zh2 of the Ten Soil Layers Within the
CLM‐ParFlow Model

Layer i z : m Δz1 : m zh1 Δz1 : m zh2

1 (top) 0.0071 0.0175 0.0175 0.02 0.02

2 0.0279 0.0276 0.0451 0.03 0.05

3 0.0623 0.0455 0.0906 0.05 0.10

4 0.1189 0.0750 0.1655 0.07 0.17

5 0.2122 0.1236 0.2891 0.13 0.30

6 0.3661 0.2038 0.4929 0.20 0.50

7 0.6198 0.3360 0.8289 0.30 0.80

8 1.0380 0.5539 1.3828 0.50 1.30

9 1.7276 0.9133 2.2961 0.70 2.00

10 2.8646 1.5058 3.8019 1.00 3.00

Figure 3. (a, b) Percentages of sand and clay used in the Community Land Model stand‐alone model. (c, d) Saturated
hydraulic conductivity Ks and porosity for the surface layer (0–3 m depth) in the CLM‐ParFlow model. (e, f) show the same
for the bottom layer (3–30 m depth).
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Atmospheric forcing is extracted from the high‐resolution reanalysis data set COSMO‐REA6 (Bollmeyer
et al., 2015) and used as input for CLM. COSMO‐REA6 was created by assimilating observed meteorological
data into the atmospheric model COSMO at 6 km resolution over the European continent. In the COSMO‐REA6,
ERA‐interim data (Dee et al., 2011) are used as lateral boundary conditions. Compared to other data sets, such as
ERA‐interim (at 80 km resolution) and ERA5 (at 25 km resolution), the COSMO‐REA provides a higher res-
olution atmospheric reanalysis. It is shown that the high‐resolution reanalysis provides additional value compared
to coarse scale reanalysis and leads to a better representation of small‐scale variability (Bollmeyer et al., 2015). A
subset of highly requested variables can be directly downloaded from the open data server at DWD (ftp://
opendata.dwd.de/climate_environment/REA/COSMO_REA6), including essential variables which were used in
this study, for example, wind speed, air humidity, air pressure, air temperature, precipitation, downward short
wave radiation and downward long wave radiation.

3.2. Experiment Set Up and Analyses

The localized EnKF scheme is used in the data assimilation experiments with an ensemble ofN= 32 members. To
characterize the uncertainty of the land surface‐subsurface simulations, random perturbations are introduced for
each ensemble member, including (a) atmospheric forcings for both the CLM stand‐alone model and the CLM‐
ParFlowmodel, (b) soil texture for the CLM stand‐alone model and (c) hydraulic conductivity and porosity for the
soil (0–3 m depth) of the CLM‐ParFlow model. Four atmospheric variables, including precipitation, air tem-
perature, long‐wave radiation and short‐wave radiation are perturbed in a spatially and temporally homogeneous
manner with correlations among the four variables defined by a correlation matrix (shown in Table 3). The mean
value and standard deviation of the perturbation of precipitation, air temperature, long‐wave radiation and short‐
wave radiation are (0, 0 K, 0 W/m2, 0) and (0.15, 1.5 K, 30 W/m2, 0.15) respectively. While the noise
(lognormally distributed) for precipitation and shortwave radiation perturbations is introduced multiplicatively,
the noise for longwave radiation and temperature perturbations is additive. Precipitation is multiplied by log‐
normally distributed noise and a bias is introduced by the back transformation (Han et al., 2013). Therefore, a
constant correction factor (0.95) is applied to each of the ensemble members.

In the CLM stand‐alone simulations, soil texture is perturbed by adding a spatially uniform noise to both % sand
and % clay (±10%). The sum of sand and clay percentages is constrained to be smaller than 100% for each
ensemble member. For CLM‐ParFlow experiments, the ensemble of soil texture data used in CLM is transformed
into input parameters for CLM‐ParFlow in the surface layers. Hydraulic conductivity realizations are generated
using the Rosetta model, while porosity realizations are calculated using Equation 8. Consequently, the pertur-
bation of hydraulic conductivity and porosity is also spatially uniform. The hydraulic conductivity and porosity
for the bottom aquifer layers are not perturbed.

To initiate model simulations with the CLM stand‐alone model, the model is first spun up using atmospheric
forcing data from the years 2015–2017. CLM‐ParFlow, on the other hand, has a more comprehensive charac-
terization of the terrestrial water cycle and a dynamic equilibrium needs to be reached to have a more proper
model initialization (Ajami et al., 2014). It is spun up with initial states from a previous study (Sulis et al., 2017)
and then using forcing data of the year 2017 until a dynamic equilibrium is reached. The DA experiments are
conducted in the subsequent year 2018.

Soil moisture from SMAP products is quality controlled by internal quality flags. The measurement depth of
SMAP is considered to be 5 cm. The localization radius is set to 20 grid cells (10 km) to take into account the
approximal size of the Backhus‐Gilbert optimal interpolated original SMAP footprints. The measurement error is

Table 3
Correlation Matrix of Perturbed Atmospheric Forcing Variables

Variable name Precipitation Shortwave radiation Longwave radiation Temperature

Precipitation 1 − 0.8 0.5 0.0

Shortwave radiation − 0.8 1.0 − 0.5 0.4

Longwave radiation 0.5 − 0.5 1.0 0.4

Temperature 0.0 0.4 0.4 1.0
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set to 0.04 cm3/cm3 which is the target accuracy of SMAP mission. The assimilation experiments are run with a
one‐hour time step, while soil moisture data assimilation is performed daily. In previous studies (Zhao
et al., 2021), it was demonstrated that there is no systemic bias present between simulated soil moisture by CLM‐
ParFlow, SMAP soil moisture retrieval and in situ soil mositure measurements, and as such, there is no
requirement for bias correction. The CLM model is reported to have an overestimation of soil moisture in a
number of studies (Naz et al., 2019; Zhao et al., 2021). Conversely, the SMAP observations exhibit less bias in
comparison to in situ measurements. We consider that applying a bias correction (e.g., the cumulative distribution
function) matching technique (Reichle & Koster, 2004) is not suitable here. The relative systematic errors be-
tween SMAP soil moisture and CLM‐modeled soil moisture are not taken into account in this case.

In this study, six simulation experiments (see also Table 4) are conducted using the TSMP‐PDAF framework: (a)
CLM‐OL: an open‐loop simulation (without data assimilation) using CLM stand‐alone; (b, c) assimilation of
SMAP L3_SM_P_E soil moisture into CLM model, employing either state‐only update (CLM‐DA) or state and
parameter update (CLM‐DA‐SP); (d) CLM‐PFL‐OL: an open‐loop simulation with the CLM‐ParFlow; (e, f)
CLM‐PFL‐DA and CLM‐PFL‐DA‐SP, similar to (b, c) but with the CLM‐ParFlow model. When updating both
states and parameters in the CLM‐ParFlowmodel, a damping factor of 0.1 is employed to limit the intensity of the
hydraulic conductivity perturbations (Hung et al., 2022; F. Li et al., 2024).

3.3. Evaluation Metrics

To assess the influence of the assimilation, statistical performance measures were evaluated, including bias,
RMSE, ubRMSE, and Pearson's correlation coefficient (r) (Gruber et al., 2020) and a normalized error reduction
index (NER):

bias =
1
T
∑
T

i=1
(Xti − Yti ,obs) (21)

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
T
∑
T

i=1
(Xti − Yti ,obs)

2

√
√
√

(22)

ubRMSE =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
RMSE2 − bias2

√
(23)

rX,Y =
cov(X,Y)
σXσY

(24)

NER = 100 × (1 −
EDA
EOL

) (25)

where T is the total number of time steps, Xti is the modeled ensemble mean variable (soil moisture, ET or
groundwater level) and Yti ,obs is the corresponding observed value, both at time step ti. cov(X,Y) is the covariance
between model simulated values and observed values, σX is the standard deviation of model simulated values, and

Table 4
Summary of the Six Numerical Experiments Conducted in This Study for the Community Land Model and CLM‐ParFlow
Models, Along With Their Respective Abbreviations Used in the Subsequent Tables and Figures

Model Scenario Abbreviation

CLM Open loop CLM‐OL

LEnKF with state update CLM‐DA

LEnKF with state and parameter update CLM‐DA‐SP

CLM‐ParFlow Open loop CLM‐PFL‐OL

LEnKF with state update CLM‐PFL‐DA

LEnKF with state and parameter update CLM‐PFL‐DA‐SP
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σY is the standard deviation of observed values. The EDA and EOL represent the RMSE from the data assimilation
and open‐loop runs.

4. Results and Discussion
4.1. Evaluation With In Situ Soil Moisture Measurements

Figure 4 compares the soil moisture time series simulated by CLM and CLM‐PFL for the OL, DA and DA‐SP
experiments, with in situ measurements and SMAP observations. Figure 4 shows the seasonal dynamics in
both observations and simulated data sets, with the highest soil moisture in early spring and a distinct dry‐down
from May into the summer time. The simulated soil moisture from CLM‐OL is systematically higher than the
measurements. Data assimilation corrects the overestimation of soil moisture, especially under drier conditions in
the summer season. In general, the simulated soil moisture from CLM‐ParFlow shows better temporal consis-
tency with in situ measurements and the SMAP retrievals.

Figure 5 summarizes the evaluation metrics for CLM and CLM‐PFL, with and without data assimilation ex-
periments compared with 13 CRNS observations. It shows that both CLM‐DA and CLM‐DA‐SP experiments are
closer to in situ soil moisture measurements in terms of ubRMSE and R than the open loop runs. The median
ubRMSE decreases from 0.063 cm3/cm3 to 0.060 cm3/cm3 for CLM‐DA and 0.060 cm3/cm3 for CLM‐DA‐SP,
meanwhile, the median R increases from 0.72 to 0.79 and 0.78, respectively. For CLM‐PFL, the median ubRMSE
and R for OL and two DA scenarios are 0.050 cm3/cm3, 0.045 cm3/cm3 and 0.046 cm3/cm3, 0.78, 082 and 0.83
respectively. Overall, compared to the OL runs, assimilation with the CLM and CLM‐PFL models lead to small
but improved estimates of soil moisture in terms of Pearson r and ubRMSE. It is important to note that while
improvements are observed in the median values for Pearson r and ubRMSE, the mean values do not demonstrate
a significant improvement for the CLM‐ParFlow model. This discrepancy suggests an increased variability in
site‐specific performance, with some locations exhibiting a deterioration following assimilation. One potential
explanation for this is the scale mismatch between the high‐resolution model (500 m) and the coarser resolution of
the SMAP data (9 km). In the assimilation process, multiple sites are located within the same SMAP grid cell,
leading to homogenized updates that may not reflect the finer‐scale dynamics captured by CLM‐ParFlow.

Figure 4. Time series of simulated daily soil moisture (at the depth corresponding to the Cosmic‐Ray Neutron Sensor
(CRNS)) average over 13 CRNS sites from (a) CLM‐OL, CLM‐DA and CLM‐DA‐SP and (b) CLM‐PFL‐OL, CLM‐PFL‐
DA and CLM‐PFL‐DA‐SP) along with soil moisture measurements by Soil Moisture Active Passive (SMAP) (green
triangles) and CRNS (black circles), and precipitation for the simulation period of 2018.03.01–2018.11.30. The CRNS
observations are shown in black circles and SMAP observations are shown in green triangles.
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The performance of the CLM and CLM‐PFL models in simulating soil moisture varies across the 13 site (see
Figures A1, A2, and 6). For example, at the Heinsberg and Gevenich sites, the DA runs with CLM and CLM‐PFL
show the best agreement with the CRNS measurements, with R values above 0.83 and ubRMSE values below
0.041 cm3/cm3. At the Merzenhausen site, the performance of the CLM‐PFL‐DA and CLM‐PFL‐DA‐SP sim-
ulations is somewhat lower than CLM‐DA and CLM‐DA‐SP. The assimilation behaves poorly for some stations
like Wüstebach, where the ubRMSE of the OL is lower than for the DA runs. The soil in Wüstebach site has high
organic matter content, resulting in a high porosity, which is not considered by the pedotransfer functions used for
both models. In general, the coupled model CLM‐PFL with data assimilation tends to result in the lowest
ubRMSE value and highest correlation across most sites. The site‐to‐site variability can be attributed to the
limited footprint of CRNS measurements, which have a radius of approximately 130–300 m. While this footprint
is relatively close to the model grid resolution, it only partially covers a model grid cell. This partial overlap
introduces additional uncertainty when comparing observed and simulated soil moisture, particularly in regions
where soil moisture exhibits high spatial variability. Furthermore, factors such as dense vegetation cover, soil
texture, and topographical features are known to impact SMAP observations, thereby affecting their integration
into SM simulations.

Figure 5. Boxplots of (a) r and (b) unbiased Root Mean Square Error for the simulated soil moisture in the CLM‐OL, CLM‐
DA and CLM‐DA‐SP and CLM‐PFL‐OL, CLM‐PFL‐DA and CLM‐PFL‐DA‐SP simulations compared to Cosmic‐Ray
Neutron Sensor measurements for the simulation period of 2018.03.01–2018.11.30. The box plot shows the 10%, 25%, 50%,
75%, and 90% quantiles, with the dashed line representing the mean values and circle marks representing the outliers.
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4.2. Spatial Analysis of OL and DA and SMAP Observations

In the following, we analyze the assimilation effects on spatial patterns of soil moisture (for the upper top 5 cm)
for different assimilation scenarios. Figure 7 shows the spatial patterns of modeled soil moisture and their dif-
ferences with SMAP observations for the simulation period. The CLM‐OL simulation consistently produces
higher soil moisture than SMAP observations over most of the study area, indicating a systematic positive bias in
the CLM model. This overestimation is also present in the CLM‐DA and CLM‐DA‐SP simulations but the de-
viations are reduced. This suggests that data assimilation is effective in reducing biases and introducing a degree
of spatial heterogeneity into the model's output. However, localized assimilation schemes seem to lead to the
formation of artificial soil moisture patterns that are related to SMAP footprints.

In contrast, all CLM‐ParFlow configurations exhibit a more pronounced spatial heterogeneity in soil moisture
compared to CLM and its data assimilation variants. This enhanced heterogeneity reflects the ability of CLM‐
ParFlow to simulate lateral flow processes that contributes to a more realistic representation of soil moisture
distribution, particularly in areas with complex topography. The assimilation of SMAP data in the CLM‐PFL‐DA
and CLM‐PFL‐DA‐SP experiments further modifies the soil moisture patterns, resulting in a more localized
variability of soil moisture that aligns better with SMAP observations. Note that the reductions in discrepancies
are spatially heterogeneous, for instance, southern areas with complex topography, where lateral flow dominates,
tend to benefit more.

Figure 6. Performance metrics of (a) r and (b) unbiased Root Mean Square Error for the simulated soil moisture in the CLM‐
OL, CLM‐DA and CLM‐DA‐SP and CLM‐PFL‐OL, CLM‐PFL‐DA and CLM‐PFL‐DA‐SP simulations compared to
Cosmic‐Ray Neutron Sensor measurements for the simulation period of 2018.03.01–2018.11.30.
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Interestingly, the performance of CLM‐PFL‐DA and CLM‐PFL‐DA‐SP is very similar, illustrating that parameter
estimation does not clearly improve simulation results. This could be attributed to the inherent strengths of the
CLM‐ParFlow model, which already captures key hydrological processes such as lateral flow in soil moisture
redistribution. Additionally, the lack of parameter updates for deep subsurface layers in the assimilation process
may limit the potential for further improvements in soil moisture.

Figure 7. Temporally averaged soil moisture for the period of 2018.03.01–2018.11.30: (a) CLM‐OL, (b) CLM‐DA, (c) CLM‐
DA‐SP, (d) CLM‐PFL‐OL, (e) CLM‐PFL‐DA, and (f) CLM‐PFL‐DA‐SP at model resolution, along with their respective
differences compared to Soil Moisture Active Passive (SMAP) observations at SMAP grid resolution a‐1) to f‐1), where gray
areas indicate missing values.
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4.3. Evaluation of In Situ Evapotranspiration (ET) Measurements

The influence of soil moisture DA on ET modeling is also investigated. Figure 8 shows the temporal dynamics of
daily ET at four EC sites. The simulated ET agrees well with the observations at most EC sites. A seasonal pattern
is visible, with higher values corresponding to the growing season with higher incoming radiation and increased
vegetation activity. The observed ET shows significant temporal variability, with occasional spikes, which could
be due to natural variability in weather patterns, vegetation responses, or measurement errors. The quantitative
evaluation metrics of R and ubRMSE are shown in Table 5, where no significant impact of data assimilation is
found. For the CLM model, the average r are 0.73, 0.73 and 0.74, and the average ubRMSE are 0.71, 0.71 and
0.70 mm/d for the OL, DA and DA‐SP respectively. The coupled CLM‐PFL model exhibits similar performance,
yielding r values of 0.76, 0.74 and 0.72, and average ubRMSE are observed to be 0.70, 0.71 and 0.73 mm/d for the
OL, DA and DA‐SP, respectively.

At the Selhausen site, the consistent underestimation of ET by both models during the growing season suggests a
potential misrepresentation of the crop cycle dynamics. In situ observations reveal a sharp decline in ET rates
following senescence and summer harvesting in combination with very dry conditions at that time. This decline is
not captured by either of the models, owing to the absence of harvest‐related information in the model scheme and
at least in case of CLM stand‐alone also an overestimation of the soil moisture content. By comparing Figures 6
and 8, we find that ET and soil moisture are strongly correlated, with changes in soil moisture typically being
reflected in corresponding changes in ET. The high ET simulated by CLM‐PFL‐OL at Selhausen is reduced as
soil moisture decreases by the assimilation, which reduces latent heat flux and increases sensible heat flux. The
finding aligns with previous research (Martens et al., 2016; Peters‐Lidard et al., 2011), which established a strong
correlation between the improved or degraded representation of ET fields and the corresponding changes in
simulated soil moisture induced by assimilating remote sensing soil moisture products. The only limited

Figure 8. Time series of weekly evapotranspiration simulated by (a) CLM‐OL, CLM‐DA, CLM‐DA‐SP, (b) CLM‐PFL‐OL,
CLM‐PFL‐DA and CLM‐PFL‐DA‐SP compared to in situ measurements at the four eddy‐covariance (EC) sites: Selhausen,
Wüstebach, Rollesbroich1 and Vielsalm. Black dots represent flux tower observations.
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improvements in ET characterization related to soil moisture data assimilation could be partly due to the limited
value of absolute soil moisture data to estimate energy fluxes with LSMs. Other factors, such as incoming
shortwave radiation, vegetation schemes, roughness length parameterization, also have a significant impact on the
modeled latent and sensible heat fluxes.

4.4. Evaluation of Groundwater Level Simulated by CLM‐ParFlow

During the assimilation process, the pressure head is updated based on the Mualem‐van Genuchten model (Van
Genuchten, 1980), which has an impact on the simulated groundwater levels. The simulated groundwater levels
are spatially interpolated from model grid points to the closest location of the monitoring well. Figure 9 illustrates
the validation results of mean monthly groundwater levels (in terms of Pearson correlation and RMSE evaluated
across 527 sites) for the three simulations with the CLM‐ParFlow model. The median Pearson r value for the OL
(0.73) is notably higher compared to the value for the DA (0.29) and DA‐SP (0.32) experiments, suggesting that
the OL experiment without data assimilation already captures the monthly groundwater variation well at many
sites. Contrary to the correlation results, the OL, DA and DA‐SP have similar median RMSE values of 6.25 m,
6.54 and 6.54 m respectively, suggesting that soil moisture assimilation is not able to improve groundwater depth
characterization. One potential explanation is that groundwater wells may be subject to localized influences,
which may be related to land use and human activities. The remotely sensed soil moisture data, however, have a

Table 5
Comparison Metrics of Pearson r and Unbiased Root Mean Square Error (mm/d) for the Simulated Evapotranspiration
From CLM‐OL, CLM‐DA, CLM‐DA‐SP, CLM‐PFL‐OL, CLM‐PFL‐DA and CLM‐PFL‐SP at Four EC Sites for the Period of
2018.03.01–2018.11.30

Stations Model runs r ubRMSE Model runs r ubRMSE

Selhausen CLM‐OL 0.47 1.22 CLM‐PFL‐OL 0.47 0.94

CLM‐DA 0.47 1.21 CLM‐PFL‐DA 0.47 1.11

CLM‐DA‐SP 0.49 1.17 CLM‐PFL‐DA‐SP 0.49 1.12

Wüstebach CLM‐OL 0.63 0.75 CLM‐PFL‐OL 0.62 0.75

CLM‐DA 0.63 0.75 CLM‐PFL‐DA 0.62 0.75

CLM‐DA‐SP 0.63 0.75 CLM‐PFL‐DA‐SP 0.62 0.75

Rollesbroich1 CLM‐OL 0.92 0.47 CLM‐PFL‐OL 0.87 0.69

CLM‐DA 0.93 0.48 CLM‐PFL‐DA 0.91 0.59

CLM‐DA‐SP 0.92 0.48 CLM‐PFL‐DA‐SP 0.89 0.64

Vielsalm CLM‐OL 0.90 0.40 CLM‐PFL‐OL 0.89 0.42

CLM‐DA 0.90 0.40 CLM‐PFL‐DA 0.90 0.41

CLM‐DA‐SP 0.90 0.40 CLM‐PFL‐DA‐SP 0.89 0.42

Figure 9. Comparison of model performance metrics across three CLM‐PFL scenarios for monthly groundwater level
simulations at 527 sites: (a) Pearson r (b) root mean square error).
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relatively coarse resolution and are therefore unable to capture this information. The DA‐SP experiment appears
to have a slightly higher median ubRMSE compared to DA, however, the DA‐SP experiment shows a tighter
distribution, which suggests that the results are more consistent across different sites.

To further investigate the impact of data assimilation, we present the spatial distribution of Δr and RMSE
reduction (NER) for the CLM‐PFL‐SP compared to CLM‐PFL‐OL experiments in Figure 10. As there are only
minor differences in the performances of CLM‐PFL‐DA and CLM‐PFL‐SP, we do not show CLM‐PFL‐DA here.
The spatial analysis of Δr and NER of RMSE shows that only a small portion of sites benefit from data
assimilation, indicated by both increased Δr and decreased NER. At most sites, however, the two metrics display
an inverse relationship. Regions with decreased Pearson r often coincide with areas where RMSE is notably
reduced. One possible explanation is that the groundwater level characterization improves gradually over time,
during the simulation period. However, for the overall time series this results in a worse representation of seasonal
dynamics (due to the gradual adjustments over time by DA) with an associated worse correlation between
simulated and measured values, compared to the OL run.

5. Discussion
The performance metrics show the relatively better performance of data assimilation runs compared to the open
loop runs for both CLM and CLM‐ParFlow. The SMAP retrievals are characterized by a spatial resolution of 9 km
yet exhibit discontinuities in both spatial and temporal coverage. In contrast, both CLM and CLM‐ParFlow are
run at a high‐resolution scale of 500 m, generating continuous predictions. This study supports that SMAP
products have significant skill to improve the accuracy and consistency of soil moisture estimations. However, the
improvement in soil moisture characterization for CLM‐ParFlow is less significant than the improvement for
CLM stand‐alone in the time series plot (Figure 4). This may be due to the fact that the coupled CLM‐ParFlow
already simulates soil moisture very well, leaving less room for further improvement. It is important to note that
the footprints of SMAP are much larger than the model resolution. In this study, the SMAP soil moisture data are
assigned to the nearest model grid cell, and the other surrounding grid cells within a local radius are updated via
the covariance. Another possibility is to implement multi‐scale assimilation for remote sensing soil moisture
products like SMAP. This would allow for the updating of multiple model grid cells covered by a satellite
footprint (Montzka et al., 2012). In multi‐scale assimilation, the average simulated soil moisture within a satellite
footprint is compared with the satellite soil moisture observations, which may result in improved assimilation
results for the CLM and CLM‐ParFlow models. The spatial variability in soil moisture simulated by CLM is
limited due to the CLMmodel structure, which does not account for lateral water flow processes between adjacent
grid cells. The absence of lateral flow processes restricts CLM's ability to capture the influence of topographic
features and subsurface heterogeneities on the soil moisture distribution, resulting in spatially uniform soil
moisture patterns that deviate from reality.

The results from ET validation generally agree with previous assimilation studies (Gebler et al., 2017; Martens
et al., 2016; Peters‐Lidard et al., 2011) and also for the same model (Hung et al., 2022; F. Li et al., 2024), that is,

Figure 10. The spatial distribution of (a) observed annual mean groundwater levels, and (b, c) the performance of CLM‐PFL‐
SP simulations compared to CLM‐PFL‐OL. Performance is evaluated in terms of changes in Pearson r (Δr) and reduction in
root mean square error (NER: %).
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the assimilation of soil moisture only marginally improves the estimation of ET. Larger improvements are found
under drier conditions (during the summer period). Note that the southern modeling area is predominantly
characterized as energy limited rather than water limited due to the relatively low temperatures and global ra-
diation and high annual precipitation (Section 2.1). ET in such an environment may approach the potential ET,
and is mostly controlled by energy availability (e.g., temperature and radiation) rather than soil moisture. The
findings align with (Baatz et al., 2017) and (F. Li et al., 2024), where they also found that soil moisture
assimilation had minimal effect on ET in the southern part of the area. Studies from Nearing et al. (2016, 2018)
concluded that uncertainties in soil moisture characterization are mainly influenced by soil texture, whereas ET
predictions are predominantly affected by uncertainties in forcing data. While our findings in the southern part
could support this, however, we also find that soil moisture exerts a more important control on ET in the northern
part.

In the CLM model, ET is simulated as a function of soil moisture and vegetation parameters, which makes the
model more suitable for water‐limited conditions. However, to effectively simulate both water‐ and energy‐
limited conditions, a scheme should be introduced to consider maximum ET based on available solar radia-
tion. Such a scheme would allow for a better representation of energy‐limited environments where ET is pre-
dominantly driven by energy availability rather than soil moisture. Moreover, the spatial variability as shown here
underscores the critical need for a deeper understanding and improved quantification of the transition between
energy‐limited and water‐limited conditions in LSMs. Such transitions are influenced by the complex interplay of
drivers, including meteorological factors and vegetation status (LAI).

In addition, the ET calculation is also largely influenced by uncertainties in atmospheric forcings and vegetation
parameters which control root water uptake and stomata closure. To improve ET estimation, it may be beneficial
to assimilate other data types such as ET or LAI. Studies have shown that multivariate assimilation of remotely
sensed soil moisture and ET (Gavahi et al., 2020) or LAI observations (Albergel et al., 2017; Fairbairn et al., 2017;
Rahman et al., 2022) at finer resolutions contributes significantly to improved ET characterization.

Few studies investigate the influence of assimilating soil moisture on groundwater level predictions in a coupled
modeling framework at the larger regional scale. A comparison of the modeled groundwater levels with obser-
vations from 527 wells revealed that the assimilation of SMAP soil moisture did not result in improvements in the
RMSE. An important aspect is the spatial mismatch between the model resolution and SMAP observations,
therefore, it may not be appropriate to evaluate the accuracy of the groundwater level simulations based on the
well measurements. On the other hand, the groundwater level is controlled by recharge, the aquifer transmissivity,
the aquifer geometry, and, to some extent, the topography itself (Haitjema & Mitchell‐Bruker, 2005). In this
mountainous modelling domain, regional flow is generally stronger than perpendicular flow and is mainly
influenced by the ratio of recharge to hydraulic conductivity (Gleeson & Manning, 2008). SMAP measures
surface soil moisture, which shows a weak correlation with deeper groundwater aquifers. Therefore, its effec-
tiveness in updating parameters in the deep aquifers is very limited. Additionally, the relatively coarse spatial
resolution of SMAP data limits its ability to capture variations caused by lateral flow in the CLM‐ParFlow model.
This finding is also consistent with Hung et al. (2022), while our real‐world case presents more complexity. In the
future, better results may be obtained by using a model resolution of 100 m instead of 500 m, which allows for
better representation of small valleys. The CLM‐ParFlow model is constrained to a vertical depth of 30 m and this
simplification does not fully account for the complexity of real‐world aquifer systems. Consequently, mea-
surements in deeper aquifers are excluded from the analysis. In future work, extending the vertical depth of the
model could enhance the realism of the simulations. Nevertheless, this objective would require a more detailed
representation of three‐dimensional geological structure to accurately represent the complex layering and in-
teractions within the subsurface.

In both model configurations, we find that joint updating the parameters and states does not provide better results
than only updating the states, suggesting that there may be difficulties to update parameters in the high‐resolution
real‐world caseswith the remote sensing soilmoisture information. The parameter spread (uncertainty) is still large
after the assimilation (see Figure 11). Prescribing an inaccurate soil structure could result in deteriorated soil
moisture estimates, particularly in sites like Wildenrath, which is characterized by dense forest cover. In such
circumstances, the accuracy of SMAP retrieval is subject to large uncertainty. Studies (Zhao et al., 2023) have
demonstrated that the retrieval of soil physical properties through the assimilation of remote sensing information is
unlikely to enhance the accuracy of modelled soil moisture. Assimilating high quality soil moisture measurements,
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for example, CRNS observations, probably can provide more accurate parameters for the hydrological models
(Baatz et al., 2017; F. Li et al., 2024). In this study, as the soilmoisture is updated on a daily basis, the updated values
maybe in close alignmentwith the SMAPobservations. Consequently, onlyminor changes in the soil properties are
observed.Hung et al. (2022) assimilated soilmoisture in theCLM‐ParFlowmodelwith an ensemble size of 64 for a
virtual case, and the results show that parameter estimation only gives an additional slight improvement compared
to updating soilmoisture alone.Brandhorst andNeuweiler (2022) also investigated the impact of parameter updates
with soil moisture assimilation and found that a small spread in the ensembles impedes parameter updates. Hen-
dricks Franssen and Kinzelbach (2008) suggested that 200–500 realizations may be sufficient for successful joint
state‐parameter estimationwith hydrologicalmodels.However, a larger ensemble size in thisworkwas not feasible
because of the required computational resources when running the coupled land surface‐subsurface model at high
resolution. For instance, running the CLM‐ParFlow model with 32 ensemble members for one year simulation
required 250,000CPUcore hours. In the future, a hybridmachine learning (ML) data assimilation approachwith an
approximation of the model by a ML‐based emulator could allow the simulation of larger ensemble sizes which
could improve the performance of the data assimilation and parameter estimation. However, we feel that the
remotely sensed information might also not be accurate enough to estimate model parameters, especially because
the observation is at a coarse scale and limited to the upper few cm of the soil.

One challenge of this study was trying to maintaining the consistent configurations between the CLM and CLM‐
ParFlow model despite their different representations of the subsurface. To address this, we perturbed the per-
centages of sand and clay content in a homogeneous manner in the CLM model and employed the Rosetta pedo‐
transfer function to convert these parameters into hydraulic conductivity for the CLM‐ParFlow model. The
perturbation is spatially uniform and could be improved to consider better the spatial variability of soil charac-
teristics. Additionally, previous studies (Ryu et al., 2009) suggest that input parameters and forcing data can have
complicated feedback in the model process, leading to unintended effects of the ensemble perturbation. Inves-
tigating more advanced ways to create ensembles for different variables is necessary, but beyond the scope of this
study. Additionally, it has been suggested that other parameters (α and n in the van Genuchten model) can be
estimated (Chaudhuri et al., 2018; Yetbarek et al., 2020), which was not considered in our study. However, the
estimation of α and n would bring more instabilities considering our limited number of ensembles members and
the complexity of real‐world cases.

It should be noted that the quality check for SMAP retrievals was primarily based on the retrieval quality flag,
which did not fully consider the impact of dense vegetation. The SMAP manuel (P. O’Neill et al., 2020) suggests
that data with a Vegetation Water Content (VWC) less than 5 kg/m2 is optimal for retrieval. However, as the
research area is largely covered by dense vegetation, observations with a VWC between 5 and 10 kg/m2 were also
used in the assimilation process. As the observations are spatially uniform, this introduces additional uncertainty
into the model and affects the predictions, as evidenced by the example of the Wüstebach site. Accurate esti-
mation of observation errors can improve the benefits of assimilating remote sensing products (Degelia &
Wang, 2023; Terasaki & Miyoshi, 2024). A possible future work is to consider the spatial patterns of the mi-
crowave soil moisture retrievals in order to quantify the observational errors, taking into account sensitivities to
vegetation and other atmospheric conditions.

Figure 11. Ternary diagram of (a) prior (CLM‐OL) (b) posterior (CLM‐DA‐SP) soil texture at 5 cm depth in CLMmodel, and
(c) probability density functions of prior (CLM‐PFL‐OL) and posterior (CLM‐PFL‐DA‐SP) hydraulic conductivity kr at the
same depth in CLM‐ParFlow model.
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The EnKF is an example of a sequential algorithm, which makes it well‐suited to real‐time forecasting appli-
cations, including hydrological studies, weather prediction, and other modeling tasks. However, the EnKF relies
on several underlying assumptions (Evensen, 2003) that may not always hold in practical applications, partic-
ularly in complex, high‐dimensional land surface systems. A critical aspect of improving EnKF performance—
and DA in general—is achieving an optimal balance among model structure, model parameters, observation data
and assimilation technique. Research indicates that misrepresentation of model errors (Jafarpour & Tarrahi, 2011;
Pathiraja et al., 2018; Reichle et al., 2002) can significantly impact the effectiveness of DA. A study assessing the
assimilation of satellite‐derived SM retrievals over irrigated areas in the U.S. demonstrated that the success of DA
largely depended on the model bias (S. Kumar et al., 2015). Additionally, LSMs often misrepresent the coupling
between SM and ET or runoff, leading to reduced DA performance in constraining water fluxes using SM ob-
servations (Crow et al., 2024). Future research should focus on enhancing the understanding and refinement of
LSMs parameterization to further improve DA efficiency.

6. Conclusions
In this study, the remote sensing SMAP soil moisture product is assimilated into the Community Land Model
(CLM 3.5) and the coupled land surface‐subsurface model CLM‐ParFlow (CLM‐PFL) over a region of size
22.500 km2 in western Germany for the year of 2018. A total of 32 ensemble members is generated by perturbing
the atmospheric forcings (for both the CLM and CLM‐ParFlow model), soil texture properties (for CLM) and
hydraulic conductivity and porosity (for CLM‐ParFlow). The DA experiments are carried out with the LEnKF
and SMAP data are assimilated daily. The characterization of soil moisture and other hydrological variables are
then assessed with in situ measurements. The key messages from this study and the recommendations for future
research are as follows:

1. The assimilation of SMAP soil moisture observations into the CLM and CLM‐ParFlow generally improves the
soil moisture characterization with an increase of the median Pearson correlation from 0.72 to 0.79 (CLM) and
0.79 to 0.83 (CLM‐PFL) and a reduction of the median ubRMSE from 0.063 to 0.060 cm3/cm3 (CLM) and
0.050 to 0.046 cm3/cm3 (CLM‐PFL). The coupled model shows greater soil moisture spatial variability that is
closer to reality, showing that the consideration of lateral flow dynamics is crucial for a realistic simulation of
soil moisture. These advantages cannot be fully offset by assimilating soil moisture in CLM.

2. However, the assimilation of soil moisture data does not improve the ET characterization compared to the open
loop runs for both CLM and CLM‐ParFlow, which may be attributed to the energy‐limited conditions within
the modeling domain. When compared to monthly groundwater level measurements, the assimilation does not
reduce the RMSE and the correlation between simulated and measured groundwater levels even decreases.
This outcome suggests that assimilating surface soil moisture alone is insufficient to improve groundwater
level simulations, likely due to the inherent complexity of groundwater systems and the multitude of con-
trolling factors beyond recharge. It is assumed that more accurate soil moisture data will provide more in-
formation to the models. The impact of assimilation passive and active microwave soil moisture data, either
individually or in combination, on the predictive skills of the models can be evaluated. Furthermore, we
acknowledge the importance of a higher spatial resolution of soil moisture observations, which indicates the
need to investigate the assimilation of data from sources such as Sentinel‐1 or down‐scaled SMAP products.
On the other hand, a single measurement type (in this case, soil moisture) may not be sufficient to infer other
model states in a complex coupled model. Building on previous studies, which have demonstrated the
effectiveness of multivariate data assimilation in LSMs, future research will explore the integration of addi-
tional variables—such as LAI or Total Water Storage (TWS)—to further constrain multiple model variables
and enhance performance within a coupled land surface‐subsurface framework.

3. In this work, we also assimilated soil moisture including parameter estimation and found that joint state
parameter estimation does not improve predictions compared to state estimation alone. This might point to the
difficulty of using the remotely sensed soil moisture information to improve parameter estimates over a large
domain with a complex topography. It would be beneficial to further investigate by utilizing larger ensemble
sizes and a more refined computational model once enhanced computational efficiency has been achieved.
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Appendix A

Figure A1. Time series of simulated daily soil moisture (at the depth corresponding to the Cosmic‐Ray Neutron Sensor
(CRNS)) at 13 CRNS sites for the CLM‐OL, CLM‐DA and CLM‐DA‐SP simulation experiments and the period
2018.03.01–2018.11.30. The CRNS observations are shown in black circles.

Figure A2. Time series of simulated daily soil moisture (at the depth corresponding to the Cosmic‐Ray Neutron Sensor
(CRNS)) at 13 CRNS sites for the CLM‐PFL‐OL, CLM‐PFL‐DA and CLM‐PFL‐DA‐SP simulations and for the period
2018.03.01–2018.11.30. The CRNS observations are shown in black circles.
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Data Availability Statement
The atmospheric reanalysis data set COSMO‐REA6 (Bollmeyer et al., 2015) was downloaded from the opendata‐
FTP server at DWD https://opendata.dwd.de/climate_environment/REA/COSMO_REA6/ (Bollmeyer
et al., 2024). The soil texture information and permeability information were described in the paper by Shrestha
et al. (2014) and Boas et al. (2023). The SMAP soil moisture was retrieved from https://www.earthdata.nasa.gov/
data/instruments/smap‐l‐band‐radiometer (NASANational Snow Ice Data Center Distributed Active Archive and
Center &National Snow Ice Data and Center, 2024). The in situ soil moisture (H. R. Bogena et al., 2022) and eddy
covariance data set was obtained from https://ddp.tereno.net/ddp/ (last access: 20 December 2024) (H. Bogena &
Ney, 2021). The groundwater measurements are freely available at https://www.geoportal.nrw/?activetab=portal
(last access: 20 December 2024) and https://www.grondwatertools.nl (last access: 20 December 2024). Software
Availability Statement: The TSMP framework is detailed in Shrestha et al. (2014) and Gasper et al. (2014). Its
repository is open‐source and available on GitHub at https://github.com/HPSCTerrSys/TSMP (Hartick
et al., 2023). PDAF version 1.13.2 is available for download following registration at http://pdaf.awi.de/trac/wiki
(Nerger, 2023). The pedotransfer function (Rosseta) Python package is included in (Y. Zhang & Schaap, 2017),
under GPLv2+ licence and accessible at https://github.com/usda‐ars‐ussl/rosetta‐soil (Marcel G. Schaap, 2016).
Additional Python package such as pftools at https://github.com/parflow/parflow (Smith et al., 2019) was also
used for data processing.
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